AUTOMATION IN MANUFACTURING

Course Code	19ME4801C	Year	IV	Semester	II	
Course Category:	Program Elective	Branch	ME	Course Type	Theory	
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1	Describe the basic concepts of automation and automated flow lines	L2		
CO2	CO2 Analyze automated flow lines and line balancing methods.			
CO3	Explain the importance of material handling, automated inspection systems	L2		
	in automated assembly.			

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											1	3	1
CO2	3	3	2			2				2		1	3	1
CO3	3	2	2									1	3	1

	Course Content	Mapped CO s				
UNIT-1	INTRODUCTION TO AUTOMATION: Automation in Production	CO1				
	Systems-Types of Automation, Automation Principles and Strategies,					
	Basic elements of an automated system, Advanced automation					
	Functions - Safety Monitoring, Maintenance and Repair Diagnostics,					
	Error Detection and Recovery, Levels of automations-Five levels of					
	automation and control in manufacturing.					
	AUTOMATED FLOW LINES: Methods of work part transport,					
	Work part Transfer Mechanisms, Storage Buffer					
UNIT-2	ANALYSIS OF AUTOMATED FLOW LINES: General	CO2				
	terminology, analysis of transfer lines with and without buffer storage,					
	partial automation, implementation of automated flow lines.					
	LINE BALANCING: Line Balancing Algorithms-Largest Candidate					
	Rule, Kilbridge and Wester Method, Ranked Positional Weights					
	Method, ways for improving line balance.					
UNIT-3	AUTOMATED ASSEMBLY SYSTEMS: Types and configurations,	CO3				
	Parts delivery at workstations, Applications, Calculation of feed rates,					
	cycle time for single station assembly system, Partial Automation					
	Product design for automated assembly.					

UNIT-4	AUTOMATED GUIDED VEHICLE SYSTEMS: Types of	CO3
	Vehicles, AGVS Applications, Vehicle guidance technologies, Vehicle	
	Management, Vehicle Safety, Rail guided vehicles, Conveyor systems	
	AUTOMATED STORAGE SYSTEMS: Fixed-Aisle Automated	
	Storage/Retrieval Systems, Types, AS/RS Applications, Carousel	
	Storage Systems, Carousel Applications.	
UNIT-5	AUTOMATED INSPECTION SYSTEMS: Overview of Automated	CO3
	Identification Methods, Bar Code Technology, Radio Frequency	
	Identification, Other AIDC Technologies-Magnetic Stripes, Optical	
	Character Recognition, and Machine Vision	

	Learning Resources
Text	1. Mikell P.Groover, "Automation, Production Systems and Computer
Books:	Integrated Manufacturing "4 th Edition, <i>Pearson Education</i> , 2003.
	2. Assembly Automation and Product Design, by Geoffrey Boothroyd, 2 nd
	Edition, Taylor and Francis
Reference	1. Morris, S.Brian (1994), "Automated Manufacturing Systems", (McGraw
Books:	Hill) ISBN: 0-07-113999-0.
	2. Automation by W. Buekinsham.
E -	https://nptel.ac.in/courses/112/104/112104288/
Resources	
& other	
digital	
Material:	